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Received 29 Tuly 1991

Abstract. The renormalized phonon frequencies of a monatomic classical crystal at melting
are related to the direct correlation functions of its liquid at freezing by means of a functional
expansion of the free energy of a suitably deformed crystal around the liquid phase.
Expressions for the elastic constants follow by the ‘long-waves” method and are compared
with earlier results obtained by the homogeneous deformation method. The role of three-
body correlations in the functional expansion is discussed, but the illustrative calculations
that we present include only the Ornstein-Zernike two-body direct correlation function of
the hiquid, weighted by a Debye-Waller factor. The Ornstein—Zernike function can be
obtained either directly from the measured liquid structure factor or by liquid structure theory
inmodel systems. Our calculations of phonon dispersion relations and elastic constants refer
to the BCC metals sodium and potassium, to a Lennard-Jones model for FCC argon, and to
the classical one-component plasmacrystallized in the Bccand e structures, The theoretical
results are compared with neutron inelastic scattering and elastic constants data on sodium,
potassium and argon, as well as with computer simulation data on the crystallized plasma.

1. Introduction

The theory of lattice dynamics and elastic constants of crystal is a fully developed branch
of solid-state physics, starting from the very early work of Borm and his co-workers (see,
for example, Born and Huang [1]). The central role in the theory is played by the
potential energy of the crystal as a function of the nuclear positions, which is expanded
in powers of the displacements of the nuclei from the equilibrium lattice sites. The quasi-
harmonic approximation can be transcended to treat anharmonic terms in the expansion
either by perturbation theory (see, for example, Cowley [2, 3]) or by the self-consistent
phonon approach (see, for example, Choquard [4], Glyde and Kiein [5]). Anharmonicity
results in both a renormalization of the phonon frequencies and a broadening of the
phonons, which become increasingly important with increasing temperature.

In the present work we treat the lattice dynamics and the elastic constants of a crystal
close to melting from an entirely different point of view, which gives weight to structure
and leaves the role of the interatomic forces implicit. Our approach relates the renor-
malized phonon frequencies to the direct correlation functions of the liquid near freezing,
These functions were first introduced in liquid state theory by Ornstein and Zernike [6]
and, in a system obeying classical statistical mechanics, have simultaneously the meaning
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of static response functions and of structural functions. The relationship is established
within the density functional method by expanding the free energies of a suitably
deformed crystal and of the undeformed crystal at melting around the liquid at freezing.
At the simplest level of approximation the result is to allow an evaluation of the full set
of phonon dispersion relations in the high-temperature crystal from the static structure
factor of the liquid, weighted by a Debye-Waller factor. The fact that the liquid structure
factor, in its full dependence on wave-number, contains information on the renormalized
force constantsin the crystal at melting is also conceptually interesting from the viewpoint
of liquid state theory. While we note that we have no access in our approach to phonon
broadening by anharmonicity, we may recall that in theories of liquid state dynamics the
structure factor enters to determine the frequencies of density fluctuations in situations
where the damping of propagating modes is high (see, for example, March and Tosi
[7D).

Our work falls within a major line of development of the density functional method
as applied to classical systems, which has aimed at relating properties of a crystal near
melting to the structure of its liquid near freezing. The initial impulse to this development
has come from the work of Ramakrishnan and Yussouff [8] on liquid—solid coexistence,
leading to a wealth of theoretical results on this phase transition (for recent reviews
see Rovere et al [9] and Baus {10]) and on the liquid-solid interface [11, 12]. It has
subsequently been pointed out by Ramakrishnan [13] and in more detail by Lipkin et al
[14] that through the application of 2 homogeneous deformation to the hot crystal, one
may relate its elastic constants to liquid structure (see also [15-17]). In this work we shall
compare the expressions for the elastic constants that we obtain from the phonon
dispersion curves by the long-waves method and those obtained by the homogeneous
deformation method. Ramakrishnan [13] has also pointed out that a crystal deformed
by the presence of a lattice defect may be ireated by similar methods, suggesting
interesting possibilities for the theoretical study of defectsin crystals at high temperature,

The lay-out of the paper is briefly as follows. In section 2, we present cur treatment
of the free energy of the deformed crystal leading to an expression for the phonon
frequencies in terms of the two-body direct correlation function of the liquid, the role
of higher correlations being introduced by including three-body correlations which are
then discussed in some detail in the appendix, Section 3 deals with the long wavelength
limit and discusses the elastic constants as well as the longitudinal plasma mode at iong
wavelength in the case of the classical Wigner crystal. Section 4 presents numerical
results and comparisons with experimental or computer simulation data for Bcc alkali
metals, for a Lennard-Jones model of FCC argon, and for the crystallized plasma in both
the Bcc and FCC structure. Section 5 concludes the paper with a summary and some final
remarks. A preliminary report of this work has already appeared in the literature [18].

2. Theory of phonon dispersion relations

Weconsider amonatomicclassical system with an inhomogeneoussingle-particle density
profile n(r) and treat its thermodynamic functions by a functional expansion method
which was originally developed by Lebowitz and Percus [19] and by Yang, Fleming and
Gibbs [20]. The same method has been used in the theory of liquid—solid coexistence
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(see, for example, Haymet and Oxtoby [11]). The grand thermodynamic potential Q as
a functional of n(r) is given by

Q)] = Fl()] + | drn@[Ue) - 4]

— —g[n(d)] + ke T f dr n(A[C() — 1]. 6h)

In (1) Fis the Helmholtz free energy aside from the interaction of the system with the
external potential U(r), u is the chemical potential, — ¢ is the non-ideal contribution to
the free energy arising from the interactions between the particles, and

Clr) = (kg T) ™' d@[n(r)]/6n(r). ()
The higher functional derivatives of @ define a hierarchy of correlation functions,

o(r1, r2) = 8C(r,)/dn(r;) = (ks T) ' 8> @[n(r)]/dn(r,)dn(ry) (3)

c®(ry, ra, 13) = 62C(r,)/8n(r2)dn(r;) (4)

etc. The functional expansion of C(r) around its value C; in the homogeneous fluid at
density #, thus reads

) =C, + jdr'c( I = PG = n] + % f f dr dre® @ — r, " — An(r')

—nl][n(r")—n1]+. . (5)
The correlation functions in (5) refer to the fluid at density #,. A similar functional

expansion for @[n(r)] leads to

Q)] = @, — ksT [ drin() = m]
+ ikBTf f drdr’c(|r — r'a() + n,J[nG") — n,]

X [2n(r) + ny]ln(r’) — msJin(r?) — ] + . . (6)

where £, is the grand potential in the fluid.

We are specifically interested in a monatomic system crystallizing in a simple Bravais
lattice structure described by a set of lattice sites R, which is deformed by giving to each
site a displacement d;. In particular, we consider a wave of lattice displacements of the
form

d; = N"2& cos(g-R;) (7)

which is generated at constant temperature, volume and chemical potential. In (7) Nis
the number of lattice sites and & is (aside from normalization) the eigenvector of a
lattice vibration of wave-vector g and polarization index s. As such £ is invariant under
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the transformationg — ¢ + G, where Gisany reciprocal lattice vector (RLV). The density
profile of the deformed crystal is given by

w(e) = (Z 6 - R, - 4, - ,0)) ®)

where u () are the atomic displacements due to thermal fluctuations and the brackets
denote the statistical average. After a Fourier transform we write

) = 5 S5 ® Z explik- (-~ R~ )] ©)

where
f(&) = {exp[—ik - u,(1)]). (10

f(k) describes the average spread of atomic density around each lattice site due to
tbermal fluctuations, that we have assumed to be unchanged by the deformation. In fact,
we shall later assume this spread to be of the Gaussian type leading, for a cubic crystal,
to

fk) = exp(—4k*(u?)) (11)
where (%) is the mean square atomic displacement from thermal fluctuations. These
approximations on the role of thermal fluctuations in the density profile of the deformed
crystal should be subject to further theoretical study.

By using (7) in (9), expanding the exponential up to quadratic terms in £, and using
the relation Z; exp(ik - R;) = Ny g, we find

n(r)/n, = g.f(G)[l — (L/ANY(G - & )] exp(iG - r)
+ N2 %f(q +G)(g + G) - £, ) sinf(g + G) - r]

~ (1/4N) %f(Zq +G)(2g + G) - £, ) cosl(2g + G) - 1] (12)

where n, is the average density of the crystal, The last term on the right-hand side of this
equation could, for our purposes, be dropped already at this point, since it will ultimately
contribute to the free energy of deformation, to quadratic terms in &, only for ¢ lying
on a zone boundary (g = G/2). For such values of ¢ the density profile as written in (12)
includes two physically equivalent lattice waves, with wave-vectors lying at opposite
points on the zone boundary, and only one of them should be counted in evaluating the
free energy of deformation.

The change in grand potential accompanying the deformation follows by inserting
(12) in (6) and subtracting the corresponding value of Q for the undeformed crystal
(&g = 0). With the definition

c(k) = n; f dr e(r) explik - r) (13)

we find that the work done in deforming the crystal is
A2 = (n,ka T/ ){ S (g + O)la + GDllg + 6) - £ 1
G

- 2 FAG)AG)G - €, )} (14)
G0
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per particle. We have retained in (14) only the terms arising in (6) from the two-
body direct correlation function. The contributions coming from three-body and higher
correlations are discussed in the appendix.

AQ in (14) contains both the interaction of the deformation with the external
potential causing it and the intrinsic free energy change stored in the deformed crystal.
Equating AQ to —7?Mwv | &, |?, where M is the atomic mass and v is the frequency
eigenvalue of the lattice vibration indexed by ¢ and s, we find the expression for the
dispersion relations

vk = ~(kaT/arm M| S (g + G)ellq + GI)g + ) £

- 3 POHOG - 8)?) as)
G#0

where 2, = E,/|E| is the normalized eigenvector of the lattice vibration. The
expression (15) contains both longitudinal modes (£ | ¢) and transverse modes (£, L ¢),
the latter arising from the “Umklapp’ factors G « £ in both sums over RLVs.

It is easily shown that the expression (15) for the dispersion relation is invariant
under translation of g by any RLV. This property follows from the invariance of £, under
such a translation and from the fact that the sum of two RLVs is again an RLV. In all the
calculations that we shall report below we have checked that (15) yields the same resuits
along equivalent directions in the Brillouin zone and reproduces the degeneracies of
phonon branches that are expected from symmetry.

The relationship of the quantities in (15) to structure is immediate for the Ornstein—
Zemnike function c{k) which, by the classical fluctuation—-dissipation theorem, is related
to the liquid structure factor S(k) by

k) = 1 — 1/5(k). (16)

With regard to the function f(k), on the other hand, we note that the Ramakrishnan—
Yussouff theory of freezing allows one to evaluate the quantities f2(G) for the crystal at
melting from the same information on liquid structure. These are the well-known
Debye-Waller factors giving the intensity of the Bragg reflections from the crystal and
hence have a direct structural meaning. The theory of freezing allows a test of the
Gaussian approgimation and an estimate of the mean square displacement {2} in the
crystal at melting. However, in the calculations reported below we have preferred, for
amore stringent test of our theoretical results, to adopt (11) for cubic crystals with values
of (%) obtained from data on the crystal.

3. Long wavelength limit

The elastic constants follow from the dispersion relations (15) by the method of long
waves, 1.e. by taking the limit g — 0. We consider first the case of a system composed of
atoms, in which ¢(g) tends to a constant c(0) given by

C(O) =] - (nlkBTKT)_l (17)

K being the isothermal compressibility of the liquid. The case of the plasma, in which
c(gq) contains a Coulomb term which diverges for ¢ — 0, will be discussed later in this
section.
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Considering for simplicity a cubic crystal, where f(k) is isotropic, and introducing
the notation F(k) = f2(k), a lengthy but straightforward calculation leads to

~(4in, M} fn ks Tg?) = [c0) + 3 RGH(GN@ - £
G#(

+ go D(GYG - £, 1{4(d - £ )G+ §) + (G- £,)[1 — (G- §)°}

+ 2 E(GXG- £,)* (G- 9)? (18)
G#0
with
D(G) = (1/2)G[F'(G)c(G) + F(G)¢'(G)] (19)
and
E(G) = (1/2G2[F(G)e(G) + 2F'(G)c'(G) + F(G)c"(G)]. (20)

G and § are the unit vectors in the directions of G and ¢. Clearly, a dispersion behaviour
of acoustic type is recovered at long waves.

Explicit expressions for the elastic constants follow from (18) by considering specific
directions of wave propagation and polarization. Taking § = [100] and £, = [001] we
find

cp = T [D(G)@- —GiGz) + E(G) Gsz] 1)

4
m1 gxo G

whereas from 4 = [100] and £ = [100] we find

oy = -2 :B {[ OFP> F(G)C(G)] +3 [D(G)(%—-—C-G;-E-) + E(G) 04] 22)

Finally, considering a wave which propagates along the [110] direction with polarization
in the (110] direction we find the elastic constant (¢, — ¢13)/2,

 nlkeT (1 3GIG! 3GG?
e - )= —202 3 DOz +352) + BO 55 52) | @
and hence

cpp = = ;"B {[ 0+ 3 F(G)c(G)]

G#0

+ 3 [D(G)(l - GE‘G%) + E(G) GZGZ}}. (24)

4
G#0 G

Inderiving these equations, account has been taken of cubic symmetry in the summations
over the RLVs within each slar.
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Before comparing the foregoing results with those obtained by the homogeneous
deformation method, we pause to discuss the special case of long wavelength vibrations
in the crystallized plasma. In this system the limiting behaviour (17) is replaced by

c(g—>0) = — (4nn,e?)/(ks Tq?) + constant (25)

and hence itis immediately seen from (18) that the longitudinal mode tends to the plasma
frequency [21]

w, = (drn,e? MY, (26)

The constant in {25) enters to determine a quadratic dispersion of the optic mode as one
moves away from the zone centre. The transverse modes are instead acoustic near the
zone centre, the elastic constants c,, and (c;; — ¢,;)/2 still being given by (21) and (23).

We turn next to the homogeneous deformation method for the evaluation of the
elastic constants. We follow the treatment already given by Lipkin ef a/ [14]. A homo-
geneous strain is applied to the crystal at constant temperature, volume and chemical
potential. The density profile n(r) of the deformed crystal is obtained by noting that the
RLVs change from G to G - (1 + €)1, where ¢ is the strain tensor. From (12) at £, = 0
one has

n(R)n, =1+ 2 f(G-(1+ &) ) expliG- (1 + £} - ¢] 27
G=0

and hence from (6) the work done in deforming the crystal is

= (nfkp T)/(2n}) 50 [e(|G- A+ )T )G A +8)7") - c(G)fYUG)]  (28)

including again only the terms from two-body correlations. Expansion of (28) in powers
of the components of the strain tensor and comparison of the quadratic terms with the
well-known resuits of elasticity theory yield the three elastic constants for a cubiccrystal.

It is immediately evident that the expansion leads to expressions for the elastic
constants involving the functions D{G) and E(G) defined in (19) and (20), while the
contributions coming in the long-waves method from the first term on the right-hand
side of (18) are missing in the homogeneous deformation method. We have seen above
that, in the long-waves method, one of these contributions is responsible for the plasma-
mode behaviour of the longitudinal vibration in the classical Wigner crystal. Similarly,
for systems where (17) is applicable, the ¢(0) terms in (22) and (24) contribute a term
n?/(n?K 1) to the bulk modulus of the crystal from the compressibility K+ of the liquid,
There is, therefore, an obvious discrepancy between the results obtained for the elastic
constants in the two methods.

The expansion of (28) leads to

n2kgT 1 GiG? G2G?
cu=-"E0 3 [D(G)(i = ) + E(G) ] (29)
_ nkkeT G* G!
o == z,o [D(G)(l 64) + B(G) 2= } (30)
and
cn = —(ntkpT/ny) 2 [-D(G) + E(G)I(G2GE/G*). (31)

On comparison with (21)-(24) one notices that, whereas there is agreement between
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the results of the two methods in the terms determined by E(G), there are additional
discrepancies arising from the terms containing D(G).

Asis well known from a number of previous instances in the literature, discrepancies
between the long-waves method and the homogeneous deformation method commonly
arise from the use of truncated expansions. We shall examine in sections 4.2 and 4.3
below the numerical importance of the above discrepancies between the two methods
for the calculation of elastic constant. We also note that in their treatment of (28) Lipkin
et al [14] omitted the dependence of f2 on strain and set ¢’(G) = 0. In this case D(G) =
0 and the expressions (29)-(31) show that the calculated elastic constants ¢;; and ¢y
would satisfy the Cauchy relation ¢y = ¢44. We shall illustrate the numerical con-
sequences of these approximations in sections 4.2 and 4.3.

4. Numerical results

4.1. Dispersion curves and elastic constants of sodium and potassium

In our calculations of the phonon dispersion relations for the Bcc alkali metals Na and
K, we use values of ¢(k) obtained directly from the measured values of the structure
factor S(k) of the liquid near freezing, from x-ray diffraction experiments [22] and from
neutron diffraction experiments [23]. The Debye-Waller factors in (15) are crucial in
ensuring convergence of the summations over RLvs. In the case of Na, where the
S(k) data extend over a more limited range of wave-number (covering 11 stars of RLvs
in the x-ray data and 15 stars in the neutron data), we obtain convergence within a few
parts in 10°. For the Debye-Waller factors we have used the Gaussian approximation
(11), taking the mean square displacement (u2) at the melting temperature T}, (or
equivalently the Lindemann parameter L = ((u2)/d*)"* with d the first neighbour
distance) from evaluations based on phonon frequency spectra constructed from neutron
inelastic scattering data [24]. For both Na (T, = 371 K) and K (T}, = 336 K) we have
taken L = 0.15, the primary data being those of Woods er al [25] on Na at 90 K and those
of Cowley et af [26] and of Dolling and Meyer {27] on X at 9 K and below. It is worth
pointing out that a recent calculation of the liquid—solid transition of the alkali metals
within the Ramakrishnan—Yussouff theory has found that the Gaussian approximation
is quite good (although the theory has problems in dealing with the Debye-Waller factor
at the (200) star) and has estimated L = 0.15 [28].

Our results for the phonon dispersion relations of Na and K at melting are reported
in figures 1 and 2, respectively. In these and the following figures, the curves referring
to some propagation directions are repeated to show the degeneracies at the zone
boundaries with other branches. The results for Na are compared in figure 1 with the
data of Woods ez af [25] at 90 K and with those reported by Glyde and Taylor [29] at
296 K. The results for K are compared in figure 2 with the data of Cowley et al [26] at
9 K and with those of Buyers and Cowley [30] at 299 K. It is evident that for both metals
there is substantial agreement between the theoretical results obtained with the two sets
of structure factor data, and also that cur results have the general shapes of the measured
dispersion curves, The quantitative agreement with the high temperature data is quite
good, especially for the transverse modes in the [00] and | ££0] directions and for the
F branch in the [ ££E] direction. However, the observed lowering of the longitudinal
branchin the [ ££0] direction with increasing temperature ispot reproduced, The general
effect of an increase in temperature is a downward shift of the phonon frequencies,
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Tigure 1. Calculated dispersion relations for phenons in Na at melting, from liquid structure
data obtained by x-ray diffraction (full curves) and neutron diffraction (broken curves),
compared with those obtained from neutron inelastic scattering experiments at 90K by
Woods et af [25] (open circles, triangles and stars) and at 296 K as reported by Glyde and
Taylor [29] (full circles, triangles and stars). The direction of the wave-vector g, with
components in units of 7°3/3/d, is indicated at the top of each graph.

as was calculated for K by Buyers and Cowley [30] in a perturbative treatment of
anharmonicity and for Na by Glyde and Taylor [29}in a self-consistent phononapproach.
The latter authors stressed, however, that the T, [ £50] branch is an exception to this

broad rule.

The use of measured values for the two-body correlations has instead limited use-
fulness in the calculation of elastic constants. We have found it impossible to derive from
the liquid structure factor data the values of ¢'(G) and ¢"(G) needed to evaluate D(G)
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Figure 2. Calculated dispersion relations for phonons in K. at melting, from liquid structure
data obtained by x-ray diffraction (fult curves) and neutron diffraction (broken curves},
compared with those obtained from neutron inelastic scattering experiments at 9K by
Cowley et al {26] (open circles and triangles) and at 299 K by Buyers and Cowley [30] (full
circles and triangles). The direction of the wave-vector ¢, with components in units of
n'V3/d, is indicated at the top of each graph.

and E(G) with the necessary accuracy. One may, however, still evaluate the elastic
constants in the long-waves method from the slopes of the calculated dispersion curves
near the zone centre. The results that we estimate for the elastic constants of Na and K
at melting from the slopes of the calculated dispersion curves in figures 1 and 2 are shown
in table 1, in comparison with the adiabatic elastic constants measured for Na at 368 K
[31] and for K at 336 K [32] by ultrasonic techniques. It is evident that the magnitude of
the elastic constants is well reproduced in both systems, though there is some tendency
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Table 1. Elastic constants of Na and K at melting (in GPa), calculated graphically by the
long-waves method from primary data of x-ray or neutron diffraction on the melt and
compared with experimental values of Fritsch et af [31, 32].

X-ray Neutron Experiment

Na ¢ 7.6 8.2 735+0.12
Cyz 6.9 7.3 613 +£0.04

Cy 4.2 39 3.79 £0.04

K ¢y 4.0 4.1 3.50 £ 0.02
Cz 3.5 33 3.08 £0.08

Cu 2.0 2.3 1.68 £ 0.02

to overestimate them. It is particularly satisfactory that the theoretical results account
for the large deviation from the Cauchy relation between ¢y, and c44.

4.2. Dispersion curves and elastic constants of argon

In our calculations on argon as an example of FCC crystals, we have adopted a Lennard-
Jones model potential in order to carry out accurate liquid structure calculations, which
enable us to test the various approaches to the elastic constants that we have presented
in section 3. The parameters of the Lennard-Jones potential are taken from the work of
Moleko and Glyde [33]. The liquid structure is evaluated by the integral equations
technique of Zerah and Hansen [34], which is known from a number of previous
calculations on various fluid systems to yield very accurate results. In particular, the
approach that we have followed ensures thermodynamic self-consistency on the value
of the isothermal compressibility of the liquid as obtained from the virial theorem and
from thermodynamic fluctuation theory, yielding ¢(0) = —18.1 against the experimental
value ¢(0) = —18.9[35]. The range of wave-number in our calculation of S(k) covers 26
stars of RLVs, ensuring convergence of the sums in (15) to a few parts in 10*, We
have taken the Lindemann parameter L = 0.145 from Monte Carlo simulation data on
essentially the same Lennard-Jones system near the triple point [36].

Qur results for the phonon dispersion relations of argon at melting (7, = 83.78 K)
are shown in figure 3. They are compared with those reported at 10 K and at 82 K by
Fujii et al [37] from neutron inelastic scattering experiments on samples of isotopicaily
pure Ar, after rescaling the frequencies by the factor (36/39.948)'/2. The calculated
dispersion curves again have the correct general shapes and satisfactorily account for
the observed lowering of phonon frequencies with increasing temperature. In the experi-
ments at 82 K the observed phonon profiles were too broad and weak to allow reascnable
estimates of the phonon frequencies, except over a limited range of wave-number
[37]. The phonon frequencies and widths obtained in a more limited neutron inelastic
scattering study of argon at 77 K [38] have been discussed theoretically by Klein er af
[39] in a perturbative treatment of anharmonicity. They found good agreement with the
data, except for the transverse [00§] branch.

Table 2 reports the values of the elastic contants of argon at melting as calculated by
various methods and compares them with the data of Gewurtz and Stoicheff [40] on
ad:abatic elastic constants at 82.3 K from Brillouin scattering experiments. Evidently,
the iong-waves method gives, for this system, results that are quite reasonable, though
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Figure 3. Calculated dispersion relations for phonons in argon at melting, from liquid
structure calculations in a Lennard-Jones model, compared with those obtained from
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Phonon dispersion relations and elastic constants 9955

Table 2. Elastic constants of a Lennard-Jones model of argon at melting (in GPa), calculated
from (a) the slopes of the dispersion curves; (b) the long-waves method formulae; (c) the
homogeneous deformation method formulae, and (d) the formulae of Lipkin ez af [14]. The
experimental values are from Gewurtz and Stoicheff [40].

(a) (b) (c) {d) Experiment
() 2.44 2.43 1.76 1.71 238004
Cz 1.92 1.93 1,15 1.08 1.56 £ 0.03
Ca 1.24 1.26 1.31 1.08 1.12 £0.03

not fully quantitative. Its performance in relation to the deviation from the Cauchy
relation is again quite satisfactory. We note that the measured elastic constants of argon
drop by almost a factor of two in going from 10K to 8§2.3 K [37, 40]. Such a drop arises
to a large extent from the thermal expansion of the crystal [41] and has been accounted
for in simulation work on the high-temperature crystal [42].

4.3. Dispersion curves and elastic constants of the classical Wigner crystal in the BcC and
FCC structures

The classical one-component plasma, which is a model system composed of identical
point-like charges on a uniform neutralizing background, is characterized by its coupling
strength parameter I = €%/aky T with a = (4zn/3)~13. The fluid phase is known from
computer simulation work to crystallize into the BCC structure, the latest value for
the coupling strength at the phase transition being I' = 178 [43]. A transition of the
supercooled fluid into the FCC structure has also been reported at I' = 192 [44, 43].

In our calculations we have adopted the generalized mean spherical approximation
[45] to evaluate the structure factor of the fluid. This yields analytic results for ¢(%) that
incorporate the expression of the internal energy of the fluid as a function of T from
simulation [43]. The results are thermodynamically self-consistent, and are known to be
highly accurate by comparison with simulation data on the structure of the fluid. We
have used the analytic expression for ¢(k) to evaluate analytically the derivatives ¢’(G)
and ¢"(G) entering (19) and (20) and have checked the resuits by independent numerical
calculations. The calculations of phonon dispersion relations and elastic constants have
been carried out with the fluid taken both at T = 178 (crystallization into BCC structure)
and at I' = 192 (crystallization into Fcc structure). In the former case we have taken the
Lindemann parameter L = 0.16 from Monte Carlo simulation data [46], while in the
latter we have calculated L = (.22 from the harmonic expression for the mean square
displacement [47] using the frequencies of lattice vibrations in the FCC structure given
by Helfer et al [44].

Our results for the phonon dispersion curves of the classical Wigner crystal in the
BCC and FCC structures at melting are shown in figures 4 and 5, respectively. We have
found that the 7', [ ££0] mode in the FCCstructure becomes unstable near the zone centre,
and in this case we show in figure 5 the modulus of the calculated frequencies with a
negative sign. The calculated dispersion curves are compared with the results of the
harmonic calculations by Carr [48] and Clark [49] on the BCC structure and by Helfer et
al [44] on the Fcc structure, to indicate that the general shapes of the various dispersion
branches are reproduced. We have been unable to find in the literature either simulation
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Figure 4. Calculated dispersion relations {or the classical Wigner crystal in the BCC structure
at I = 178, compared with the results of harmonic calculations by Carr [48] (triangles) and
by Clark [49] (squares). The frequencies are in units of the plasma frequency v, and the
direction of the wave-vector g, with components in units of 2V/3/d, is indicated at the top of

each graph.

data or anharmonic calculations on the lattice dynamics of the classical Wigner crystal
at finite I'. Kugler [50] has shown that the dispersion curves in the harmonic approxi-
mation are the same for a classical and a quantal Wigner crystal and has proceeded to
evaluate the effects of anharmonicity in the latter case, finding a general lowering of the
eigenfrequencies with decreasing coupling strength. He has also discussed the Kohn

sum rule,
Sl =w? (32)
&

pointing out that its validity is restricted to the harmonic approximation and showing
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Figure 5. Calculated dispersion relations for the classical Wigner crystal in the FCC structure
at I = 192, compared with the results of harmonic calculations by Helfer et al [44] (circles,
squares and triangles). For the T'[ ££0] mode near the zone centre, where it is found in our
calculations to be unstable, we report the modulus of the caleulated frequencies with a
negative sign. The frequencies are in units of the plasma frequency v, and the direction of
the wave-vector g, with components in units of #V2/d, is indicated at the top of each graph.
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Figure 6. Calculated deviations from the Kohn sum rule in the classical Wigner crystal in the
BeC structure at ['= 178, Our results for =, w32, {curves) are compared with the results
obtained by Carr [48] (triangles) and by Clark [49] {(squares) in the harmonic approximation.

that the sum of the squared eigenfrequencies over polarizations is lowered below w? by
anharmonicity in the quantal case. In our calculations on the classical Wigner crystal we
find that this is the case only for the FCC structure, as is shown in figures 6 and 7.
Turning to the long-wavelength limit, the dispersion relation of longitudinal modes
near the zone centre can be written

W, — w, +iayg°.

(33)

For example, in the [00£] direction we find (in units of w,d*/7%) & = ~0.2 for the BcC
structure at ' = 178 and @ = —0.4 for the FCC structure at I' = 192, The elastic constants
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Figure 7. Calculated deviations from the Kohn sum ruie in the classical Wigner crystal in the
FCe structure at T' = 192. Our results for T, w2, (curves) are compared with the results
obtained by Heifer et al [44] (circles) in the harmonic approximation.
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‘Table 3. Elastic constants of a classical Wigner crystal in the BCC structure at I' = 178 and in
the Foestructure at I = 192 (in units of ne?/a), calculated from (a) the slopes of the dispersion
curves; {b) the long-waves method formulae; (c) the homogencous deformation method
formulae; and {(d) the formulae of Lipkin e a [14]. The computer simulation values are from
Qgata and Ichimaru [51] and refer to T’ = 200 for the Bcc structure and to I = = for the FCC

structure.
(a) (b) {c) {d) Simulation
BCC (¢ — cup)/2 4,60 % 1072 4.74 x 1072 490x 1077 3.57x107? 1.9 % 1072
€ 0.19 0.19 0.19 0.18 0.12
FCC ey —ep)f2  —1.17x 1070 -1.26 x 1072 ~8.35 % 1073 6.44 x 1072 2.066 x 1072
Cy 0.14 0.14 0.14 .12 0.1852

(cy — €12)/2 and ¢4 calculated by various methods for the two structures at their respect-
ive melting points are reported in table 3 and compared with recent simulation data of
Ogata and Ichimaru {51] on the BccC structure at I' = 200 and on the FcC structure atI' =
w_ Ali the theoretical results reproduce the basic property that the Wigner crystal is very
soft against the shear deformation described by (¢, — ¢12)/2 and much stiffer against
the shear deformation described by c4,. As already noted, in fact we find that in the FcC
structure at melting the crystal is unstable against the former deformation (except when
we use the original formulae of Lipkin et af [14]). Quantitative comparison of the
calculated elastic constants with the available data shows that the quality of the present
theoretical results is considerably worse than we have found to be the case for argon in
table 2. This may be a consequence of a more important role of three-body (and possibly
higher) microscopic correlations in the classical plasma, as was found in the treatment
of its liquid—solid transition by the Ramakrishnan-Yussouff theory (see, for example,

[99).

5. Summary and concluding remarks

We have presented a new method to evaluate the phonon dispersion relations and the
elastic constants of a crystal near melting, which relates them to the direct correlation
functions of its liquid near freezing with weights given by Debye-Waller factors. The
main approximations leading to physically transparent and easily calculable expressions
are (i) the treatment of thermal fluctuations in the crystal deformed by a wave of lattice
displacements, which are taken into account through Debye-Waller factors obtained
from the undeformed crystal, and (ii) the truncation of the functional expznsion at two-
body correlation terms. Both these aspects of the theory that we have presented could
be improved: the first through a variational treatment of on-site density profiles in the
deformed crystal, and the second by taking advantage of progress in the theory of liquid-
solid coexistence, as we have indicated in our brief discussion of higher correlations in
the appendix.

We have illustrated our theoretical results at the present level of approximation by
calculations on several BCC and FCC crystals at melting, using either directly measured
input for the two-body correlation function or the results of highly accurate liquid
structure theories on model potentials. Although the numerical resulis that we have
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obtained are not fully quantitative, they mostly reproduce the known trends and agree
with the available data at a semi-quantitative level.
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Appendix. Contributions from three-body correlations

In deriving the contributions to the work of deformation which arise from the three-
body correlation functions in (6), use is made of the symmetry property [52]

Cfsl(kh ky) = Cm("z, k)= cO(k,, —k, ~ k) (A1)

and of the sum rule

2 F)FRa) Ry + ke (ky, o) (ks - E )

ky,k2

= =2 2 fle)f (ko) flky + k) ke, RoXky - Eg)lhz - §gs) (A2)

kykz
which is easily proven from (A1) under the condition f (k) = f(—k). We have defined
cOky, ky) = n} f I dry, dri;c®(ry, riz) expli(ky - rio + &y« 1)) (A3)

The full expression for AQ is

20 =25 4+ Ol + ) Eal' = D AGNG 5| +42,  (AD
G#0
where
Ag+6) =g+ Ollg+ G + L+ 2@+ 6.0l (A9

with ) = (n, = n1)/ny, and

n kBT

AQ, = E B(q,6G)gq- E)l(g + G) - &4]

ﬂl

" kB s > {2B(Gy,q + G1)[(g + G2) - 5]

4 Tdn?
G1#0 G2#0.-Gy

X [(q + Gl + G2) * gqs] - B(Gl » GZ)(GI - gqs)z} (A6)
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where
B(Gy,q+ G2) =f(G\)f(g + G,)f(g + G, + G)c® (G, q + Gy). (A7)

In the first term on the right-hand side of (A4) the three-body terms enter as
corrections to the two-body terms from the intrinsic density dependence of ¢(r), since

c@®(k, 0) = ni(8[c(k)/n]/on,. (AB)

Similar corrections enter the expression for the free energy difference between solid and
liquid in the theory of freezing [11] and have been taken into account (approximately,
although to infinite order in the functional expansion) in extensions of the low-order
theory such as the weighted density approximation of Curtin and Ashcroft [53] (see also
Curtin [54]}. The implication is that such corrections could be approximately included
in the dispersion relation (15) by using c(k) at a suitably chosen average density rather
than at the density n, of the liquid at freezing.

The terms collected in (A6} describe instead genuinely microscopic effects of three-
body correlations. Again, a weighted density approximation takes some account of them
in the theory of freezing. Schemes to estimate these microscopic couplings have been
examined in the recent literature for model liquids of soft spheres [52] and of hard
spheres [55]. From the experience gained in calculations on the liquid—solid transition,
one should be prepared to expect important contributions from such terms in specific
systems, an obvious example being the case of systems with a strong angular dependence
of the interatomic forces.

The last point that we wish to make here concerns the behaviour of the three-body
correlation contributions in the long wavelength limit. It is alengthy, but straightforward
calculation to show that in the limit ¢ — 0 all the three-body terms in {A4) lead to terms
in »Z which are of order ¢°, including the case of the longitudinal optic mode in the
crystallized plasma. The expression for the three-body contributions to the elastic
constants and to the dispersion of the optic mode in the plasma are too lengthy to be
given here, but will be available elsewhere [56].
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