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Density functional approach to phonon dispersion 
relations and elastic constants of high-temperature 
crystals 

M Ferconi and M P Tosi 
Depanmcnt 01 Theoretical Physics of the Universit) of Tncste and lnternauonal Centre 
for Thcoretical P h p m .  Suada Costiera 11, IJM14Tneste, Italy 

Received29 July 1991 

Abstract. The renormalized phonon frequencies of a monatomic classical crystal at melting 
arerelated tothedirectcorrelationfunctionsofitsliquidatfreezing by meansofafunctional 
expansion of the free energy of a suitably deformed crystal around the liquid phase. 
Expressions for lhe elastic ~ ~ ~ t a n t ~  follow by the 'long-waves' method and are compared 
with earlier results obtained by the homogeneous deformation method. The role of three- 
body correlations in the functional expansion is discussed, but the illustrative calculations 
that we present include only the Omstein-Zernike two-body direct correlation function of 
the Liquid, weighted by a Debye-Waller factor. The Orstein-Zemike function can be 
obtained eitherdirecllyfrom the measured liquidstructure factoror by liquid structure theory 
in modelsystems. Ourcalculationsofphonondispersion relations and elasticconstantsrefer 
to the BCC metals sodium and potassium, to a Lennard-Jones model for FCC argon, and to 
lheclassicalone-componentplasmacrystallizedintheBccandFCCstructures. The theoretical 
resultsare compared with neutron inelasticscatteringandelasticconstantsdataonsodium, 
potassium and argon, as well as with computer simulation data on the crystallized plasma. 

I. Introduction 

The theory of lattice dynamicsand elastic constantsof crystal isafuUy developed branch 
of solid-state physics, starting from the very early work of Born and his co-workers (see, 
for example, Born and Huang [l]). The central role in the theory is played by the 
potential energy of the crystal as a function of the nuclear positions, which is expanded 
in powers of the displacements of the nuclei from the equilibrium lattice sites. The quasi- 
harmonic approximation can be transcended to treat anharmonic terms in the expansion 
either by perturbation theory (see, for example, Cowley [Z, 31) or by the self-consistent 
phononapproach(see,forexample,Choquard[4],GlydeandKlein[5]). Anharmonicity 
results in both a renormalization of the phonon Gequencies and a broadening of the 
phonons, which become increasingly important with increasing temperature. 

In the present work we treat the lattice dynamics and the elastic constants of a crystal 
close to melting from an entirely different point of view, which gives weight to structure 
and leaves the role of the interatomic forces implicit. Our approach relates the renor- 
malizedphononfrequenciestothe direct correlationfunctionsoftheliquidnear freezing. 
These functions were first introduced in liquid state theory by Ornstein and Zernike [6] 
and, ina system obeyingclassical statistical mechanics, have simultaneously the meaning 
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of static response functions and of structural functions. The relationship is established 
within the density functional method by expanding the free energies of a suitably 
deformed crystal and of the undeformed crystal at melting around the liquid at freezing. 
At the simplest level of approximation the result is to allow an evaluation of the full set 
of phonon dispersion relations in the high-temperature crystal from the static structure 
factorofthe liquid, weightedbya Debye-Wallerfactor. The fact that theliquidstructure 
factor, in its fulldependenceonwave-number, containsinformation on the renormalized 
forceconstantsin thecrystalat melting is alsoconceptuallyinterestingfromthe viewpoint 
of liquid state theory. While we note that we have no access in our approach to phonon 
broadening by anharmonicity, we may recall that in theories of liquid state dynamics the 
structure factor enters to determine the frequencies of density fluctuations in situations 
where the damping of propagating modes is high (see, for example, March and Tosi 

Our work falls within a major line of development of the density functional method 
as applied to classical systems, which has aimed at relating properties of a crystal near 
melting to thestructureofitsliquid near freezing. Theinitialimpulse to thisdevelopment 
has come from the work of Ramakrishnan and Yussouff [SI on liquid-solid coexistence, 
leading to a wealth of theoretical results on this phase transition (for recent reviews 
see Rovere et a1 [9] and Baus [lo]) and on the liquid-solid interface [11,12]. It has 
subsequently been pointed out by Ramakrishnan [13] and in more detail by Lipkin etal 
[14] that through the application of a homogeneous deformation to the hot crystal, one 
mayrelateitselasticconstants toliquidstructure (seealso[15-17]). In thiswork weshall 
compare the expressions for the elastic constants that we obtain from the phonon 
dispersion curves by the long-waves method and those obtained by the homogeneous 
deformation method. Ramakrishnan [13] has also pointed out that a crystal deformed 
by the presence of a lattice defect may be treated by similar methods, suggesting 
interestingpossibilitiesforthe theoretical studyof defectsincrystalsat high temperature. 

The lay-out of the paper is briefly as follows. In section 2, we present our treatment 
of the free energy of the deformed crystal leading to an expression for the phonon 
frequencies in terms of the two-body direct correlation function of the liquid, the role 
of higher correlations being introduced by including three-body correlations which are 
then discussed in some detail in the appendix. Section 3 deals with the long wavelength 
limit and discusses the elastic constants as well as the longitudinal plasma mode at long 
wavelength in the case of the classical Wigner crystal. Section 4 presents numerical 
results and comparisons with experimental or computer simulation data for BCC alkali 
metals, for a Lennard-Jones model of FCC argon, and for the crystallized plasma in both 
the BCC and FCC structure. Section 5 concludes the paper with a summary and some final 
remarks. A preliminary report of this work has already appeared in the literature [MI. 

171). 

2. Theory of phonon dispersion relations 

We consider a monatomic classical system with an inhomogeneous single-particle density 
profile n(r) and treat its thermodynamic functions by a functional expansion method 
which was originally developed by Lebowitz and Percus [I91 and by Yang, Fleming and 
Gibbs [20]. The same method has been used in the theory of liquid-solid coexistence 
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(see, for example, Haymet and Oxtoby [ll]). The grand thermodynamic potential 8 as 
a functional of n(r) is given by 

= -q[n(r)] + kBT drn(r)[C(r) - 11. (1) I 
In (1) Fis  the Helmholtz free energy aside from the interaction of the system with the 
external potential U(r), p is the chemical potential, -q is the non-ideal contribution to 
the free energy arising from the interactions between the particles, and 

C(r) = (k ,  T)-16p[n(r)]/6n(r).  (2) 

c(rl, rd = 6 C ( r l ) / W r d  = (k~T)-'6~p)[n(r)l/6n(r1)6n(rz) (3) 

c(3(r1,  r2,  r3) = 6'c(rl)/6n(r,)6n(r3) (4) 

The higher functional derivatives of q define a hierarchy of correlation functions, 

etc. The functional expansion of C(r) around its value CI in the homogeneous fluid at 
density nl thus reads 

1 
C(r) = C1 + dr'c( lr' - rl)[n(r') - n, J + 51 I dr' dr"d3)(r' - r,  r" - r)[n(r') 

- nl][n(r") - n,] + . . .. (5) 

The correlation functions in (5) refer to the fluid at density n,. A similar functional 
expansion for q[n(r)]  leads to 

Q[n(r)] = 9 ,  - kBT ddn(r) - nl]  I 
+dkBTII jdrdr 'dr ' 'cc3) (r '  - r , r " - r )  

x [2n(r) + nl] [n(r ' )  - nl][n(r")  - n , ]  + . . . (6) 

where 51, is the grand potential in the fluid. 
We are specifically interested in a monatomic system crystallizing in a simple Bravais 

lattice structure described by a set of lattice sitesRi, which is deformed by giving to each 
site a displacement d,. In particular, we consider a wave of lattice displacements of the 
form 

di =N-'/'Ep cos(q.Ri) (7) 

which is generated at constant temperature, volume and chemical potential. In (7) Nis 
the number of lattice sites and 5, is (aside from normalization) the eigenvector of a 
lattice vibration of wave-vector q and polarization index s. As such 5, is invariant under 
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the transformationq+ q + G, whereC isanyreciprocallatticevector(m.~). Thedensity 
profile of the deformed crystal is given by 

M Ferconi and M P Tosi 

n(r) = S(r - R i  - d, - U,@))) (8) 
( i  

where u,(r) are the atomic displacements due to thermal fluctuations and the brackets 
denote the statistical average. After a Fourier transform we write 

(9) 
1 

n ( r ) = ~ X f ( k ) X e e x p [ i k . ( r - ~ ,  - ~ J I  
k 

where 
f(k) = (exp[ -ik . u,(t)]).  

f ( k )  describes the average spread of atomic density around each lattice site due to 
thermal fluctuations, that we have assumed to be unchanged by the deformation. In fact, 
we shall later assume this spread to be of the Gaussian type leading, for a cubic crystal, 
to 

f ( k )  = exp(-8kz(u2)) (11) 
where (u2) is the mean square atomic displacement from thermal fluctuations. These 
approximations on the role of thermal fluctuations in the density profile of the deformed 
crystal should be subject to further theoretical study. 

By using (7) in (9), expanding the exponential up to quadratic terms in 6, and using 
the relation X i  exp(ik . Ri) = A'S,,,, we find 

n(r)/n, = Xf(G)[I - (1/4Y(C . EP)'I  exp(iG * r )  
c 

+ N-'" xf(q + G)[(q + G). E , ]  sb[(q + G) r ]  
G 

- 0/4Y xf(24 + GM24 + G )  * E,]' cos[(% + G )  . .I (12) 
G 

where n, is the average density of the crystal. The last term on the right-hand side of this 
equationcould, forourpurposes, bedroppedalreadyat thispoint, since it will ultimately 
contribute to the free energy of deformation, to quadratic terms in E,, only for q lying 
on a zone boundary (q = G/2). For such values of q the density profile as written in (12) 
includes two physically equivalent lattice waves, with wave-vectors lying at opposite 
points on the zone boundary, and only one of them should be counted in evaluating the 
free energy of deformation. 

The change in grand potential accompanying the deformation follows by inserting 
(12) in (6) and subtracting the corresponding value of Q for the undeformed crystal (cp = 0). With the definition 
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per particle. We have retained in (14) only the terms arising in (6) from the two- 
body direct correlation function. The contributions coming from three-body and higher 
correlations are discussed in the appendix. 

AQ in (14) contains both the interaction of the deformation with the external 
potential causing it and the intrinsic free energy change stored in the deformed crystal. 
Equating A52 to -z22Mv$,IE, 1 2 ,  where Mis the atomic mass and Y, is the frequency 
eigenvalue of the lattice vibration indexed by q and s, we find the expression for the 
dispersion relations 

v’, = - ( n . k B ~ / ~ ’ n l M ) { ~ f 2 ( q + G ) C ( 1 q + G / ) [ ( q  G + G ) - E , ] ’  

- f2(G)c(G)(G. E , ) ’ ]  (15) 
G#O 

where 2, = E, / lE , [  is the normalized eigenvector of the lattice vibration. The 
expression(lS)containsbothlongitudinalmodes(E,~~I q)andtransversemodes (E, I q ) ,  
the latter arising from the ‘Umklapp’ factors G . E, In both sums over RLVS. 

It is easily shown that the expression (15) for the dispersion relation is invariant 
under translation of q by any RLV. Thii property follows from the invariance of fw under 
such a translation and from the fact that the sum of two RLVS is again an RLV. In all the 
calculations that we shall report below we have checked that (15) yields the same results 
along equivalent directions in the Brillouin zone and reproduces the degeneracies of 
phonon branches that are expected from symmetry. 

The relationship of the quantities in (15) to structure is immediate for the Omstein- 
Zernike function c(k) which, by the classical fluctuation-dissipation theorem, is related 
to the Liquid structure factor S(k) by 

c(k) = 1 - l /S(k) .  (16) 
With regard to the functionf(k), on the other hand, we note that the Ramakrishnan- 
Yussouff theory of freezing allows one to evaluate the quantitiesf2(G) for the crystal at 
melting from the same information on liquid structure. These are the well-known 
Debye-Waller factors giving the intensity of the Bragg re5ections from the crystal and 
hence have a direct structural meaning. The theory of freezing allows a test of the 
Gaussian approximation and an estimate of the mean square displacement (U’) in the 
crystal at melting. However, in the calculations reported below we have preferred, for 
a more stringent test of our theoretical results, to adopt (1 1) for cubic crystals with values 
of (U’) obtained from data on the crystal. 

3. Long wavelength limit 

The elastic constants follow from the dispersion relations (15) by the method of long 
waves, i.e. by taking the limit q + 0. We consider first the case of a system composed of 
atoms, in which c(q) tends to a constant c(0) given by 

c(0) = 1 - (n,k,TK,)-’  (17) 

&being the isothermal compressibility of the liquid. The case of the plasma, in which 
c(q) contains a Coulomb term which diverges for q + 0, will be discussed later in this 
section. 
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Considering for simplicity a cubic crystal, wheref(k) is isotropic, and introducing 
the notation F(k) = f 2 ( k ) ,  a lengthy but straightforwardcalculation leads to 

-(4n'nIMv$/n,kBTq2)--, [c(O) + F(G)c(G)](Q. E,)Z 
G#O 

D(G) = (l/Z)G[F'(G)c(G) + F(G)c'(G)] 

E(G) = (1/2)Gz[F"(G)c(C) + ZF'(G)c'(G) + F(G)c"(G)]. 

(19) 

and 

(20) 

G and Bare the unit vectors in the directions of G and q. Clearly, a dispersion behaviour 
of acoustic type is recovered at long waves. 

Explicit expressions for the elastic constants follow from (18) by considering specific 
directions of wave propagation and polarization. Taking Q = [lo01 and E, = [Ool] we 
find 

whereas from tj = [lo01 and E m  = [lo01 we find 

cli=-n:k,T{[c(0)+ E F(G)c (G) ]+  2 [ D ( G ) ( ~ - ~ ) + E ( G ) F ] .  G: (22) 
n1 G#O C+O 

Finally, considering a wave which propagates along the [ 1101 direction with polarization 
in the [IiOl direction we find the elastic constant (cn - c,)/2, 

and hence 

ci2 = -*T[ [c(O) + 2 F(G)c(G)] 
n1 C#O 

In deriving these equations, account has been taken of cubicsymmetry in the summations 
over the RLVS within each star. 
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Before comparing the foregoing results with those obtained by the homogeneous 
deformation method, we pause to discuss the special case of long wavelength vibrations 
in the crystallized plasma. In this system the Limiting behaviour (17) is replaced by 

4q-t 0) = - (4znle2) / (kBTq2)  +constant 

w p  = (4zn,e2/M)1/2.  (26) 

(25) 
andhenceit isimmediately seenfrom (18) thatthe longitudinalmode tendstotheplasma 
frequency [21] 

The constant in (25) enters to determine a quadratic dispersion of the optic mode as one 
moves away from the zone centre. The transveme modes are instead acoustic near the 
zone centre, the elastic constants cH and (clt - c,,)/2 still being given by (21) and (23). 

We turn next to the homogeneous deformation method for the evaluation of the 
elastic constants. We follow the treatment already given by Lipkin et a1 [14]. A homo- 
geneous strain is applied to the crystal at constant temperature, volume and chemical 
potential. The density profile n(r) of the deformed crystal is obtained by noting that the 
RLVS change from G to G . (1 + €)-I ,  where E is the strain tensor. From (12) at = 0 
one has 

n(r)/n, = 1 + E f ( ~  * ( I  + exp[iG. (1 + E ) - ]  - r] (27) 
G f O  

and hence from (6) the work done in deforming the crystal is 

AQ=(nfkBT) / (2n: )  E [~(~G~(l+&)-'~)f~(C~(l+&)-~)-c(G)f~(C)] (28) 
G#O 

including again only the terms from two-body correlations. Expansion of (28) in powers 
of the components of the strain tensor and comparison of the quadratic terms with the 
well-knownresults ofelasticity theory yield the threeelasticconstantsforacubiccrystal. 

It is immediately evident that the expansion leads to expressions for the elastic 
constants involving the functions D(G) and E(G) defined in (19) and (20), while the 
contributions coming in the long-waves method from the first term on the right-hand 
side of (18) are missing in the homogeneous deformation method. We have seen above 
that, in the long-waves method, one of these contributions is responsible for the plasma- 
mode behaviour of the longitudinal vibration in the classical Wigner crystal. Similarly, 
for systems where (17) is applicable, the c(0) terms in (22) and (24) contribute a term 
n:/(n:K,) to the bulk modulus of the crystal from the compressibility KTof the liquid. 
There is, therefore, an obvious discrepancy between the results obtained for the elastic 
constants in the two method;. 

The expansion of (28) leads to 

CI1 = -- n'kBTE [D(G) ( l -$ )+E(G)7]  G :  
nl G#O 

and 

On comparison with (21)-(24) one notices that, whereas there is agreement between 
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the results of the two methods in the terms determined by E(G), there are additional 
discrepancies arising from the terms containing D(G). 

As is well known from a number of previous instances in the literature, discrepancies 
between the long-wavesmethod and the homogeneous deformation method commonly 
arise from the use of truncated expansions. We shall examine in sections 4.2 and 4.3 
below the numerical importance of the above discrepancies between the two methods 
for the calculation of elastic constant. We also note that in their treatment of (28) Lipkin 
eta1 [14] omitted the dependence off2 on strain and set c’(G) = 0. In this case D(G)  = 
0 and the expressions (29)-(31) show that the calculated elastic constants cI2 and c* 
would satisfy the Cauchy relation clz =cW We shall illustrate the numerical con- 
sequences of these approximations in sections 4.2 and 4.3. 

M Ferconi and M P Tosi 

4. Numerical results 

4. I .  Dispersion curues and elastic constants of sodium and potassium 

In our calculations of the phonon dispersion relations for the BCC alkali metals Na and 
K ,  we use values of c(k) obtained directly from the measured values of the structure 
factor S(k)  of the liquid near freezing, from x-ray diffraction experiments [22] and from 
neutron diffraction experiments [23]. The Debye-Waller factors in (15) are crucial in 
ensuring convergence of the summations over RLVS. In the case of Na, where the 
S(k) data extend over a more limited range of wave-number (covering 11 stars of RLVS 
in the x-ray data and 15 stars in the neutron data), we obtain convergence within a few 
parts in IO3. For the Debye-Waller factors we have used the Gaussian approximation 
(l l) ,  taking the mean square displacement (U’) at the melting temperature T, (or 
equivalently the Lindemann parameter L = ( @ ) / & ) l f i  with d the first neighbour 
distance) from evaluations based on phononfrequency spectraconstructed from neutron 
inelastic scattering data [24]. For both Na (T ,  = 371 K) and K (T ,  = 336 K)  we have 
taken L = 0.15, the primary data being those of Woods etaZ[25] on Na at 90 K and those 
of Cowley et al[26] and of Dolling and Meyer [27] on K a t  9 K and below. It is worth 
pointing out that a recent calculation of the liquid-solid transition of the alkali metals 
within the Ramakishnan-Yussouff theory has found that the Gaussian approximation 
isquitegood (although the theory has problemsindealingwith the Debye-waller factor 
at the (ZOO) star) and has estimated L = 0.15 [28]. 
Our results for the phonon dispersion relations of Na and K at melting are reported 

in figures 1 and 2,  respectively. In these and the following figures, the curves referring 
to some propagation directions are repeated to show the degeneracies at the zone 
boundaries with other branches. The results for Na are compared in figure 1 with the 
data of Woods et a11251 at 90 K and with those reported by Glyde and Taylor [29] at 
296 K. The results for K are compared in figure 2 with the data of Cowley et a l [26 ]  at 
9 K and with those of Buyers and Cowley [30] at 299 K. It is evident that for both metals 
there is substantial agreement between the theoretical results obtained with the two sets 
of structure factor data, and also that our results have the general shapes of the measured 
dispersion curves. The quantitative agreement with the high temperature data is quite 
good, especially for the transverse modes in the [CO51 and [ E501 directions and for the 
F, branch in the [ direction. However, the observed lowering of the longitudinal 
branchin the [ 5501 direction with increasing temperatureisnot reproduced. Thegeneral 
effect of an increase in temperature is a downward shift of the phonon frequencies, 
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Figure 1.Calculateddispersion relations for phononsin Naat melting, froomliquidstructure 
data obtained by x-ray diffraction (full curves) and neutron diEFraction (broken curves), 
compared with those obtained from neutron inelastic scattering experiments at 90K by 
Woods er nl[25] (open circles, triangles and stars) and at 296 K as reported by Glyde and 
Taylor 1291 (full circles, triangles and stars). The direction of the wave-vector q. with 
components in units of d 3 / d ,  is indicated at the top of each graph. 

as was calculated for K by Buyers and Cowley [30] in a perturbative treatment of 
anharmonicity and for Naby Glyde andTaylor [29]in aself-consistentphononapproach. 
The latter authors stressed, however, that the T1 [ E @ ]  branch is an exception to this 
broad rule. 

The use of measured values for the two-body correlations has instead limited use- 
fulnessinthecalculationofelasticconstants. We havefoundit impossible toderive from 
the liquid structure factor data the values of c'(G) and c"(G) needed to evaluate D(G) 
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Figure 2. Calculated dispersion relations for phonons in Kat  melting, from liquid structure 
data obtained by x-ray diffraction (full C U N ~ S )  and neutron diffraction (broken CUNCS), 
compared with those obtained from neutron inelastic scattering experiments at 9K by 
Cowley er nl[26]  (open circles and triangles) and at 299 K by Buyers and Cowley 1301 (full 
circles and triangles). The direction of the wave-vector q. with components in units of 
nV3/d,  is indicated at the top of each graph. 

and E(G) with the necessary accuracy. One may, however, still evaluate the elastic 
constants in the long-waves method from the slopes of the calculated dispersion curves 
near the zone centre. The results that we estimate for the elastic constants of Na and K 
at meltingfrom theslopesof thecalculateddispersioncurvesin figures 1 and2areshown 
in table 1 ,  in comparison with the adiabatic elastic constants measured for Na at 368 K 
[31] and for K at 336 K [32] by ultrasonic techniques. It is evident that the magnitude of 
the elastic constants is well reproduced in both systems, though there is some tendency 
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Table 1. Elastic wnstants of Na and K at melting (in GPa), calculated graphically by the 
long-waves method from primary data of x-ray or neutron diffraction on the melt and 
comparedwithexperimentalvaluesof Fritschefd[31.32]. 

X-ray Neutron Experiment 

Na cII 1.6 8.2 7.35 t 0 . 1 2  
E12 6.9 7.3 6.13 t 0.04 
CU 4 .2  3.9 3.79 * 0.04 

K CII  4.0 4.1 3.50 t 0.02 
Cl2 3.5 3.3 3.08 C 0.08 
CU 2.0 2.3 1.68 t 0.02 

to overestimate them. It is particularly satisfactory that the theoretical results account 
for the large deviation from the Cauchy relation between cIz and cW 

4.2. Dispersion curves and elastic constants of argon 

In ow calculations on argon as an example of FCC crystals, we have adopted a Lennard- 
Jones model potential in order to carry out accurate liquid structure calculations, which 
enable us to test the various approaches to the elastic constants that we have presented 
in section 3. The parameters of the Lennard-Jones potential are taken from the work of 
Moleko and Glyde [33]. The liquid structure is evaluated by the integral equations 
technique of Zerah and Hansen [34], which is known from a number of previous 
calculations on various fluid systems to yield very accurate results. In particular, the 
approach that we have followed ensures thermodynamic self-consistency on the value 
of the isothermal compressibility of the liquid as obtained from the vinal theorem and 
from thermodynamic fluctuation theory, yieldingc(0) = - 18.1 against the experimental 
value c(0) = -18.9 [35]. The range of wave-number in our calculation of S(k) covers 26 
stars of RLVS, ensuring convergence of the sums in (15) to a few parts in lo4. We 
have taken the Lindemann parameter L = 0.145 from Monte Carlo simulation data on 
essentially the same Lennard-Jones system near the triple point [36]. 

Our results for the phonon dispersion relations of argon at melting (T, = 83.78 K) 
are shown in figure 3. They are compared with those reported at 10 K and at 82 K by 
Fujii et a1 [37] from neutron inelastic scattering experiments on samples of isotopically 
pure 36Ar, after rescaling the frequencies by the factor (36/39.948)'/2. The calculated 
dispersion curves again have the correct general shapes and satisfactorily account for 
the observed loweringofphonon frequencies with increasing temperature. In the experi- 
mentsat 82 K theobservedphononprofileswere too broadandweak to allow reasonable 
estimates of the phonon frequencies, except over a limited range of wave-number 
[37]. The phonon frequencies and widths obtained in a more limited neutron inelastic 
scattering study of argon at 77 K [38] have been discussed theoretically by Klein et a1 
[39] in a perturbative treatment of anharmonicity. They found good agreement with the 
data, except for the transverse [OOE] branch. 

Table 2 reports the values of the elastic contants of argon at melting as calculated by 
various methods and compares them with the data of Gewurtz and Stoicheff [40] on 
adiabatic elastic constants at 82.3 K from Brillouin scattering experiments. Evidently, 
the long-waves method gives, for this system, results that are quite reasonable, though 

-- 
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Figure 3. Calculated dispersion relations for phonons in argon at melting, from liquid 
structure calculations in a Lennard-Jones model, compared with those obtained from 
neutron inelastic xatteringexperimenzs at 10 K (open circles, squares and triangles) and at 
82 K (full circles, squares and triangles) by Fujii eta1 1371. The direction of the wave-vector 
4, with components in unitsof d 2 / d ,  is indicated at the top of each graph. 
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Tabte2. ElasticconstantsofaLennard-Jonesmodelofargonat meltingOnGPa),calculated 
from (a) the slopes of the dispersion curves; (b) the long-waves method formulae; (c) the 
homogeneous deformation method formulae, and (d) the formulae of Lipkin era1 [14]. The 
experimental values are from Gewurtz and Stoicheff [40]. 

c,, 2.44 2.43 1.76 1.71 2.38 2 0.04 
ctr 1.92 1.93 1.15 1.08 1.56i0.03 .. 
cu 1.24 1.26 1.31 1.08 1.12 20.03 

not fully quantitative. Its performance in relation to the deviation from the Cauchy 
relation is again quite satisfactory. We note that the measured elastic constants of argon 
drop by almost a factor of two in going from 10 K to 82.3 K [37,40]. Such a drop arises 
to a large extent from the thermal expansion of the crystal [41] and has been accounted 
for in simulation work on the high-temperature crystal [42]. 

4.3. Dispersion curvm and elastic constants of the classical Wigner crystal in the BCC and 
FCC structures 

The classical one-component plasma, which is a model system composed of identical 
point-lie charges on a uniform neutralizing background, is characterized by its coupling 
strength parameter r = $/akBT with a = (4nn/3)-’/’. The fluid phase is known from 
computer simulation work to crystallize into the BCC structure, the latest value for 
the coupling strength at the phase transition being r = 178 [43]. A transition of the 
supercooled fluid into the FCC structure has also been reported at r = 192 [44,43]. 

In our calculations we have adopted the generalized mean spherical approximation 
[45] to evaluate the structure factor of the fluid. This yields analytic results for c(k) that 
incorporate the expression of the internal energy of the fluid as a function of r from 
simulation [43]. The results are thermodynamically self-consistent, and are known to be 
highly accurate by comparison with simulation data on the structure of the fluid. We 
have used the analytic expression for c(k)  to evaluate analytically the derivatives c‘(C) 
and c”(G) entering (19) and (20) and have checked the results by independent numerical 
calculations. The calculations of phonon dispersion relations and elastic constants have 
been carried out with the fluid taken both at r = 178 (crystallization into BCC structure) 
and at r = 192 (crystallization into FCC structure). In the former case we have taken the 
Lindemann parameter L = 0.16 from Monte Carlo simulation data [46], while in the 
latter we have calculated L = 0.22 from the harmonic expression for the mean square 
displacement [47] using the frequencies of lattice vibrations in the FCC structure given 
by Helfer et al [MI. 

Our results for the phonon dispersion curves of the classical Wigner crystal in the 
BCC and FCC structures at melting are shown in figures 4 and 5, respectively. We have 
foundthat the TI [ EEO]modeinthe~cCstructure becomesunstable nearthezonecentre, 
and in this case we show in figure 5 the modulus of the calculated frequencies with a 
negative sign. The calculated dispersion curves are compared with the results of the 
harmonic calculations by Carr [48] and Clark [49] on the BCC structure and by Helfer et 
a1 [44] on the FCC structure, to indicate that the general shapes of the various dispersion 
branches are reproduced. We have been unable to find in the literature either simulation 
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Figure4. Calculated dispesion relations lor the classical Wignercrystal in the Bccstmcture 
at r = 178, compared with the results of harmonic calculations by Carr [48] (triangles) and 
by Clark 1491 (squares). The frequencies are in units of the plasma frequency vD and the 
directionofthe wave-vectorq. withcomponentsinunitsofn~3/d,isindicaledat the topot 
eachgraph. 

data or anharmonic calculations on the lattice dynamics of the classical Wigner crystal 
at finite r. Kugler [50] has shown that the dispersion curves in the harmonic approxi- 
mation are the same for a classical and a quantal Wigner crystal and has proceeded to 
evaluate the effects of anharmonicity in the latter case, finding a general lowering of the 
eigenfrequencies with decreasing coupling strength. He has also discussed the Kohn 
sum rule, 

c w;* = w: (32) 

pointing out that its validity is restricted to the harmonic approximation and showing 
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that the sum of the squared eigenfrequencies over polarizations is lowered below w ;  by 
anharmonicity in the quantal case. In our calculationson the classical Wiper  crystal we 
find that this is the case only for the F c c  structure, as is shown in figures 6 and 7. 

Turning to the long-wavelength limit, the dispersion relation of longitudinal modes 
near the zone centre can be written 

wqL’ w p  + 1Lyeq2. (33) 

For example, in the [OOE] direction we find (in units of wpd2/n2) a! = -0.2 for the BCC 
structure at r = 178 and (Y = -0.4 for the FCcstructure at r = 192. The elasticconstants 
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Table 3. Elasticconstants of a classical Wigner crystal in the BCC structure at I‘ = 178 and in 
theFccstructureat r = 192(in unitsofn2/a),Ealculatedfrom(a) theslopesofthe dispersion 
C U N ~ S ;  (b) the longwaves method formulae; (c) the homogeneous deformation method 
formulae; fad (d) the formulae of Lipkinelal[l4]. Themmputersimulationvaluesarefrom 
Ogata and Ichimaru [SI] and refer t o r  = 200 for the Bccstructure and to r = -for the FCC 
structure. 

BCC (Cl, - C , 3 / 2  4.60 X lo-’ 4.74 X 10-’ 4.90 X 10.’ 3.57 X lo-’ 1.9 X lo-’ 
CU 0.19 0.19 0.19 0.18 0.12 

FCC (c , ,  - c& -1.17 x IO-> -1.26 x IO-’ -8.35 X IO-’ 6.44 X IO-’ 2.066 X IO-> 
CU 0.14 0.14 0.14 0.12 0.1852 

[cn - ct2)/2 andc,calculated by variousmethodsfor the two structures at their resped- 
ive melting points are reported in table 3 and compared with recent simulation data of 
Ogata and Ichimaru [51] on the BCC structure at r = 200 and on the FCC structure at r = 
50. All the theoretical results reproduce the basic property that the Wigner crystal is very 
soft against the shear deformation described by (cn - cI2)/2 and much stiffer against 
the shear deformation described by cu. As already noted, in fact we find that in the FCC 
structure at melting the crystal is unstable against the former deformation [except when 
we use the original formulae of Lipkin et a1 [14]). Quantitative comparison of the 
calculated elastic constants with the available data shows that the quality of the present 
theoretical results is considerably worse than we have found to be the case for argon in 
table 2. This may be a consequence of a more important role of three-body [and possibly 
higher) microscopic correlations in the classical plasma, as was found in the treatment 
of its Liquid-solid transition by the Ramakrishnan-Yussouff theory (see, for example, 
[91). 

5. Summary and concluding remarks 

We have presented a new method to evaluate the phonon dispersion relations and the 
elastic constants of a crystal near melting, which relates them to the direct correlation 
functions of its liquid near freezing with weights given by Debye-Waller factors. The 
main approximations leading to physically transparent and easily calculable expressions 
are (i) the treatment of thermal fluctuations in the crystal deformed by a wave of lattice 
displacements, which are taken into account through Debye-Waller factors obtained 
from the undeformed crystal, and (ii) the truncation of the functional expznsion at two- 
body correlation terms. Both these aspects of the theory that we have presented could 
be improved: the first through a variational treatment of on-site density profiles in the 
deformed crystal, and the second by taking advantage of progress in the theory of liquid- 
solid coexistence, as we have indicated in our brief discussion of higher correlations in 
the appendix. 

We have illustrated our theoretical results at the present level of approximation by 
calculations on several BCC and FCC crystals at melting, using either directly measured 
input for the two-body correlation function or the results of highly accurate liquid 
structure theories on model potentials. Although the numerical results that we have 
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obtained are not fully quantitative, they mostly reproduce the known trends and agree 
with the available data at a semi-quantitative level. 
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Appendix. Contributions from three-body correlations 

In deriving the contributions to the work of deformation which arise from the three- 
body correlation functions in (6) ,  use is made of the symmetry property 1521 

C(3)(kl,k2) = C(3)(k2,kl) = c(”(R,, 4, - k*) (AI) 

and of the sum rule 

2 f ( k l ) f W f ( k ,  + k 2 ) ~ ( ~ ) ( k i ,  W k i  . E , ) ~  
t i &  

= -2 E f(kl)f(k2)f(kl + - W 3 ) ( k i ,  k d ( k 1 .  E & Z .  E , )  (A2) 
k i t h  

which is easily proven from (Al) under the conditionf(k) = f ( - k ) .  We have defined 

~(~)(k,,k~) = n: drI2 dr13d3)(r12, r13) exp[i(kl *r12 + k2 . r i d ] .  (W ff 
The full expression for AQ is 

where 

A ( q + G ) = f Z ( q + G ) [ c ( l q + G I )  + (1 + 2 q ) ~ ( ~ ) ( q + G , 0 ) ]  (‘45) 

with TJ = (n, - nl) In,, and 
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where 
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In the first term on the right-hand side of (A4) the three-body terms enter as 
corrections to the two-body terms from the intrinsic density dependence of c(r), since 

d33(k, 0) = n:(a[c(k)/n,]/dn,. 

Similar correctionsenter the expression for the free energy difference between solid and 
liquid in the theory of freezing [ll] and have been taken into account (approximately, 
although to infinite order in the functional expansion) in extensions of the low-order 
theory such as the weighted density approximation of Curtin and Ashcroft [53] (see also 
Curtin [54]). The implication is that such corrections could be approximately included 
in the dispersion relation (U) by using c(k) at a suitably chosen average density rather 
than at the density n, of the liquid at freezing. 

The terms collected in (A6) describe instead genuinely microscopic effects of three- 
body correlations. Again, a weighted density approximation takes some account of them 
in the theory of freezing. Schemes to estimate these microscopic couplings have been 
examined in the recent literature for model liquids of soft spheres [52] and of hard 
spheres [55].  From the experience gained in calculations on the liquid-solid transition, 
one should be prepared to expect important contributions from such terms in'specific 
systems, anobvious example being the caseofsystems with a strong angular dependence 
of the interatomic forces. 

The last point that we wish to make here concerns the behaviour of the three-body 
correlationcontributionsin the longwavelength limit. It isalengthy, but straightforward 
calculation to show that in the limit q+ 0 all the three-body terms in (A4) lead to terms 
in v $  which are of order 4'. including the case of the longitudinal optic mode in the 
crystallized plasma. The expression for the three-body contributions to the elastic 
constants and to the dispersion of the optic mode in the plasma are too lengthy to be 
given here, but will be available elsewhere [56]. 
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